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Abstract: Based on the proximal point algorithm, which is a widely used tool for solving a variety of convex optimization
problems, there are many algorithms for finding zeros of maximally monotone operators. The algorithm works by applying
successively so-called “resolvent” mappings with errors associated to the original object, and is weakly convergent in Hilbert
space. In order to acquiring the strong convergence of the algorithm, in this paper, we construct a hybrid Halpern type proximal
point algorithm with errors for approximating the zero of a maximal monotone operator, which is a combination of modified
proximal point algorithm raised by Yao and Noor and Halpern inexact proximal point algorithm raised by Zhang, respectively.
Then, we prove the strong convergence of our algorithm with weaker assumptions in Hilbert space. Finally, we present a
numerical example to show the convergence and the convergence speed, which is not affected but accelerated by the projection
in the algorithm. Our work improved and generalized some known results.
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1. Introduction

Let H be a real Hilbert space endowed with a norm ‖ · ‖
and an inner product 〈·, ·〉, respectively, 2H denote the family
of all the nonempty subsets of H. Let M : H → 2H be a
set-valued mapping, S denote the set of all zeros of M , i.e.,
S = {x ∈ H : 0 ∈ M(x)}. Throughout this paper, let M be
maximal monotone and S 6= ∅. It is known that S is closed
and convex. For any k > 0, we use Jk to denote the resolvent
of M , i.e., Jk = (I + λkM)−1, where I denotes the identity
mapping onH.

We consider the problem: Find x ∈ H such that

0 ∈M(x). (1)

It’s well known that many problems in nonlinear analysis
and optimization can be formulated as the equation (1).

To solve this problem, many researchers have been studied
some interesting methods. Rockafellar [1] introduced a

fundamental inexact proximal point algorithm and proved the
sequence {xk}, generated from an initial point x0 by

xk+1 = Jk(xk + ek), (2)

converges weakly to a solution of (1) in Rn if λk ≥ c > 0,
where {ek} is an error sequence. Furthermore, he posed
an open question of whether the sequence generated by (2)
converges strongly. In 1991, Güler [2] gave an example
and showed that Rockafellar’ algorithm (2) only had weak
convergence even in an infinity-dimensional Hilbert space.

In 1992, Eckstein and Bertsekas [3] proved that the
sequence {xk}, generated from an initial point x0 by

xk+1 = (1− ρk)xk + ρkwk,∀k ≥ 0, (3)

where ‖wk − Jk(xk)‖ ≤ εk for sequences {εk}∞k=0, {ρk}∞k=0,
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{λk}∞k=0 satisfying

∞∑
k=0

εk <∞, inf
k≥0

ρk > 0, sup
k≥0

ρk < 2 and inf
k≥0

λk > 0,

converges weakly to a solution to (1) in Hilbert spaces, which
is called the generalized proximal point algorithm.

Recently, by using a modified orthogonal projection onto a
moving halt-spaces, which inspired by the projection onto a
given closed convex set Ω (or C) in [4] and [5], Zhang [6]
constructed a modified proximal point algorithm with errors
for approximating the solution of Problem (1) as follows:

x0 ∈ H,
yk = Jk(xk + ek),
xk+1 = (1− βk)xk + βkPK(xk − ρk(xk − yk)),

(4)

whereK = {z ∈ H : 〈xk−yk+ek, z−yk〉 ≤ 0}, and showed
its weak convergence in Hilbert space. The weak convergence
has being extended to Banach space by Liu [7] in 2015, but the
strong convergence of the algorithm is not given.

To obtain the strong convergence of the iterative algorithm
for solving Problem (1), there are some results in [8]-[15]. It is
worthy to mention some of the works. A simple modification
of Halpern iterative scheme is provided by Kim and Xu [10]
and Xu [14] in either a uniformly smooth Banach space or a
reflexive Banach space E as follows:{

x0 = x ∈ E,
xk+1 = αku+ (1− αk)Jk(xk),

(5)

where u ∈ D(A) ⊂ E is an arbitrary element.
Tian and Song [12] improved the results offered by Xu [16],

and proved the iterative sequence {xk} generated by

xk+1 = Jk(αku+ (1− αk)xk + ek), k ≥ 0, (6)

or
xk+1 = αku+ (1− αk)Jk(xk) + ek, k ≥ 0, (7)

converges strongly to PS(u), where u is given, {αk} ⊂ (0, 1)
satisfying

lim
k→∞

αk = 0,

∞∑
k=0

αk =∞, lim inf
k→∞

λk > 0,

∞∑
k=0

‖ek‖ <∞.

Yao and Noor [15] suggested the following generalized
version of the contraction proximal point algorithm: for given
u ∈ H, the sequence {xk} generated by

xk+1 = αku+ γkx
k + βkJk(xk) + ek, k ≥ 0, (8)

where αk, βk, γk ⊂ (0, 1) with αk +βk +γk = 1(k ≥ 0), and
proved its strong convergence with the assumptions:

lim
k→∞

αk = 0,

∞∑
k=0

αk =∞, 0 < lim inf
k→∞

γk ≤ lim sup
k→∞

γk < 1,

λk ≥ c(a positive constant), λk+1 − λk → 0,

∞∑
k=0

‖ek‖ <∞.

Zhang and Song [17] proved the strong convergence of
Algorithm (8) in a uniformly convex Banach space with a
uniformly Gâteaux differentiable norm for approximating the
zero of a m-accretive operator.

Based on the work of Yao and Noor [15] and the work
of Zhang [6], we will construct a hybrid Halpern type
proximal point algorithm with errors, which is a combination
of modified proximal point algorithm and Halpern inexact
proximal point algorithm, to find a solution of Problem
(1) involving a maximal monotone operator M , and prove
its strong convergence. To show the effectiveness of the
algorithm, an example will be given. Our work would improve
and generalize the corresponding results of Yao and Noor [15],
Zhang [6], Khatibzadeh and Ranjbar [9] and some others.

2. Preliminaries

LetH be a real Hilbert space endowed with a norm ‖ · ‖ and
an inner product 〈·, ·〉. The strong and weak convergence are
denoted by→ and⇀.

An operatorM : H → 2H is monotone if 〈x−y, u−v〉 ≥ 0,
for all (x, u), (y, v) ∈ G(M)

.
= {(z, w) ∈ H × H : w ∈

M(z)}. A monotone operator M : H → 2H is maximal if
there exists no monotone operator F : H → 2H such that
G(M) ⊂ G(F ). The following assertion can be obtained
directly from the definition above: for a maximal monotone
operator M : H → 2H and (x, u) ∈ G(M),

(x, u) ∈ G(M)⇐⇒ 〈x− z, u− w〉 ≥ 0(∀(z, w) ∈ G(M)).

In other words, an operator M : H → 2H is maximal
monotone if and only if M is monotone and (I + λM)(H) =
H for all λ > 0.

The following property and lemma will be needed for the
proof of main results.

For any k > 0, the resolvent Jk = (I + λkM)−1 has the
following property that(see [18], [19]):

(i) the resolvent Jk is firmly non-expansive, i.e.,

‖Jk(x)− Jk(y)‖ ≤ ‖x− y‖ − ‖(x− Jk(x))− (y− Jk(y))‖.

(ii) S = Fix(Jk) := {x ∈ X|Jk(x) = x} for any k > 0;
(iii) If 0 < k1 ≤ k2, then ‖Jk1(x) − x‖ ≤ ‖Jk2(x) − x‖,
∀x ∈ H;

(iv) for λ, µ > 0, the identity Jλ(x) = Jµ(µλx + (1 −
µ
λ )Jλ(x)), ∀x ∈ H.

Let PX(z) denote the projection of z onto a closed convex
subset X ⊂ H, that is, a unique element PX(z) ∈ X satisfies
the condition

‖z − PX(z)‖ = dist(z,X) := inf
x∈X
‖z − x‖.
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Then we have the following well-known properties of the
projection operator. For any x, y ∈ H and z ∈ X ,

(P1) u = PX(x)⇐⇒ 〈u− x, z − u〉 ≥ 0.
(P2) ‖PX(x)− PX(y)‖ ≤ ‖x− y‖.
(P3) ‖PX(x)− z‖2 ≤ ‖x− z‖2 − ‖PX(x)− x‖2.

Lemma 2.1. ([20]) Let {an} be a sequence of nonnegative
real numbers satisfying the property

an+1 ≤ (1− τn)an + τntn + δn, n ≥ 0,

where {τn} ⊂ (0, 1) and {tn} are such that

∞∑
n=0

τn =∞,

either

lim sup
n→∞

tn ≤ 0 or

∞∑
n=0

|τntn| <∞,
∞∑
n=0

δn <∞.

Then limn→∞ an = 0.

Lemma 2.2. ([21]) Let {sn} be a real sequence that does
not decrease at infinity, i.e., there exists a subsequence {snj

}
so that snj

≤ snj+1 for all j ≥ 0.
For every n > n0 define an integer sequence {τn} as

τn = max{n0 ≤ j ≤ n : sj < sj+1}.

Then τn → ∞ as n → ∞ and for all n > n0,
max(sτn , sn) ≤ sτn+1.

3. Algorithm and Convergence

In this section, we will propose a Hybrid Halpern type
proximal point algorithm, which is a combination of modified
proximal point algorithm and Halpern inexact proximal point
algorithm, and prove the strong convergence of the iterative
sequence {xk} generated by the given algorithm.

Algorithm 3.1. For a given point u ∈ H.

Step 1. Select initial x0 ∈ H and set k = 0.

Step 2. Find yk ∈ H such that

yk = Jk(xk + ek), (9)

where a positive sequence {λk} satisfies
lim infk≥0 λk = α > 0 and {ek} is an error sequence.

Step 3. Set Ck = {z ∈ H : 〈xk−yk+ek, z−yk〉 ≤ 0},
choose a real sequence ρk ∈ [0,∞) and compute

tk = Pk(xk − ρk(xk − yk)),

where Pk(·) = PCk
(·).

Step 4. Choose real sequences {αk}, {βk}, {γk} ⊂

(0, 1) with αk + βk + γk = 1(∀k) , and compute

xk+1 = αku+ γkx
k + βkt

k. (10)

Remark 3.1.

(1) When ρk = 1, since yk ∈ K, the iterative sequence
{xk} generated by Algorithm 3.1 reduces to

xk+1 = αku+ γkx
k + βkJk(xk + ek). (11)

Furthermore, if γk = 0, it reduces to

xk+1 = αku+ βkJk(xk + ek). (12)

(2) When u = 0 ∈ H and ρk ∈ [0, 2), Algorithm
1.1 reduces to the generalized proximal point algorithm
introduced by Zhang [6]; Furthermore, if ρk = 1, then
Algorithm 1.1 reduces to ones of Eckstein and Bertsekas
[3].

(3) For any k > 0, from the property (i) of Jk, it follows
that ‖Jk(xk + ek) − Jk(xk)‖ ≤ ‖ek‖. Hence, (11) and
(12) can be reformulated as

xk+1 = αku+ γkx
k + βkJk(xk) + θek

and
xk+1 = αku+ βkJk(xk) + θek

respectively, where θ ∈ (0, 1). Therefore, when ρk = 1,
the iterative sequence {xk} generated by Algorithm 3.1
is equivalent to the iterative method suggested by Yao
and Noor [15]. Furthermore, if γk = 0, it reduces to the
sequence given in Theorem 3 of Tian and Song [12].

Theorem 3.1. Let the set-valued mapping M : H → 2H

be maximal monotone, the sequences {xk}, {yk} and {tk}
generated by Algorithm 3.1. If ρk ∈ [0, 1],

∑∞
k=0 ‖ek‖ < ∞,

then

(1) the sequences {xk}, {yk} and {tk} are bounded;
Furthermore, limk→∞ ‖tk − yk‖ = 0 when
limk→∞ ρk = 1;

(2) limk→∞ ‖yk−xk‖ = 0⇔ limk→∞ ‖tk−xk‖ = 0.

(3) when limk→∞ αk = 0, we have

lim
k→∞

‖tk − xk‖ = 0⇒ lim
k→∞

‖xk+1 − xk‖ = 0.

(4) when limk→∞ αk = 0 and lim infk→∞ βk > 0, we
have

lim
k→∞

‖xk+1 − xk‖ = 0⇒ lim
k→∞

‖tk − xk‖ = 0.

Proof. (1) Let x∗ ∈ H be a solution of problem (1.1), then
0 ∈M(x∗). By (9), we have

1

λk
(xk − yk + ek) ∈M(yk).
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By the monotonicity of M , we deduce that

〈0− 1

λk
(xk − yk + ek), x∗ − yk〉 ≥ 0,

which leads to

x∗ ∈ Ck = {z ∈ H : 〈xk − yk + ek, z − yk〉 ≤ 0}.

Noting that for all λk > 0, x∗ = Jk(x∗), and each resolvent
Jk is non-expansive, we have

‖yk − x∗‖ = ‖Jk(xk + ek)− x∗‖ ≤ ‖xk − x∗‖+ ‖ek‖.

For tk = Pk(xk − ρk(xk − yk)), by the property (P2) of the projection operator, we deduce that

‖x∗ − tk‖ ≤ ‖(1− ρk)(xk − x∗) + ρk(yk − x∗)‖ ≤ |1− ρk| · ‖xk − x∗‖+ ρk‖yk − x∗‖
≤ |1− ρk| · ‖x∗ − xk‖+ ρk(‖xk − x∗‖+ ‖ek‖) ≤ ‖x∗ − xk‖+ ‖ek‖.

(13)

From (10) and (13), it follows that

‖xk+1 − x∗‖ = ‖αk(u− x∗) + γk(xk − x∗) + βk(tk − x∗)‖
≤ αk‖u− x∗‖+ γk‖xk − x∗‖+ βk‖tk − x∗‖
≤ αk‖u− x∗‖+ (γk + βk)‖xk − x∗‖+ βkρk‖ek‖
≤ αk‖u− x∗‖+ (1− αk)‖xk − x∗‖+ ‖ek‖.

By induction we obtain

‖xk+1 − x∗‖ ≤ max{‖u− x∗‖, ‖x0 − x∗‖}+

k∑
j=0

‖ej‖, k > 0.

Therefore, {xk} is bounded. Moreover, so are {yk} and {tk}.
Furthermore, owing to yk ∈ Ck, by the property (P2) of the projection operator, we have that

‖tk − yk‖ ≤ |1− ρk| · ‖yk − xk‖. (14)

Therefore, when limk→∞ ρk = 1, limk→∞ ‖tk − yk‖ = 0.
(2) When ρk = 1, it’s obvious. Now for ρk 6= 1, since tk = Pk(xk − ρk(xk − yk)) and yk ∈ Ck, we have that

‖tk − yk‖2 ≤ ‖(xk − ρk(xk − yk))− yk‖2 − ‖tk − (xk − ρk(xk − yk))‖2 (by (P3))

= (1− ρk)2‖xk − yk‖2 − (1− ρk)2‖tk − xk‖2 − ρ2k‖tk − yk‖2

− 2ρk(1− ρk)〈tk − xk, tk − yk〉.

Hence,

‖tk − xk‖2 ≤ ‖yk − xk‖2 +
2ρk
|1− ρk|

〈tk − xk, yk − tk〉

≤ ‖yk − xk‖2 + 2ρk‖yk − xk‖ · ‖tk − xk‖, (by (14))

and
‖tk − xk‖ ≤ (

√
1 + ρ2k + ρk)‖yk − xk‖ ≤ (2ρk + 1)‖yk − xk‖. (15)

This implies limk→∞ ‖yk − xk‖ = 0⇒ limk→∞ ‖tk − xk‖ = 0.
On the other hand, it follows from tk ∈ Ck that 〈xk + ek − yk, tk − yk〉 ≤ 0 and

‖xk − yk‖2 ≤ 〈ek, yk − tk〉+ 〈yk − xk, tk − xk〉 ≤ ‖ek‖ · ‖yk − tk‖+ ‖yk − xk‖ · ‖tk − xk‖.

Then, by (14), it holds that

‖xk − yk‖ ≤ ‖ek‖ · |1− ρk|+ ‖tk − xk‖. (16)

Therefore, from the assumptions of ek and ρk, we have

lim
k→∞

‖yk − xk‖ = 0⇐ lim
k→∞

‖tk − xk‖ = 0.
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And so the equivalence relation holds.
(3) By the definition of xk+1, we have

‖xk+1 − xk‖ = ‖αku+ γkx
k + (1− αk − γk)tk − xk‖

= ‖αk(u− tk) + (1− γk)(tk − xk)‖
≤ αk‖u− tk‖+ (1− γk)‖tk − xk‖.

Hence, when limk→∞ αk = 0 and limk→∞ ‖tk − xk‖ = 0,
we have

lim
k→∞

‖xk+1 − xk‖ = 0.

(4) Since xk+1− xk = βk(tk −xk) +αk(u−xk), we have
that

‖tk − xk‖ ≤ 1

βk
‖xk+1 − xk‖+

αk
βk
‖xk − u‖.

From limk→∞ αk = 0 and lim infk→∞ βk > 0, it follows
that

lim
k→∞

‖xk+1 − xk‖ = 0⇒ lim
k→∞

‖tk − xk‖ = 0. ♦

Lemma 3.1. If ρk ∈ [0, 1],
∑∞
k=0 ‖ek‖ < ∞, and

limk→∞ ‖tk − xk‖ = 0, then Λ(xk) ⊂ S, where Λ(xk)
denotes the set of the weak cluster points of {xk} defined by
Algorithm 3.1.

Proof. From Theorem 3.1(1), it follows that the sequence
{xk} is bounded. So we can extract a subsequence that weakly
converges to one weak accumulation point x̂. Without loss of
generality, let us suppose that xk ⇀ x̂, then we have yk ⇀ x̂.
For any fixed ν ∈ H, take an arbitrary µ ∈ M(ν). Then, it

follows from the monotonicity of M that

〈yk − ν, 1

λk
(xk − yk + ek)− µ〉 ≥ 0,

and

〈xk − ν,−µ〉 ≥ 〈xk − yk,−µ〉

− 〈yk − ν, 1

λk
(xk − yk + ek)〉. (17)

Therefore, by the assumptions and Theorem 3.1(1)(2), we
have

〈yk − ν, 1

λk
(xk − yk + ek)〉 ≤ 1

α
‖yk − ν‖ · (‖yk − xk‖+ ‖ek‖)

→ 0(k →∞).

Taking limits in (17),

〈x̂− ν, 0− µ〉 = lim
k→∞

〈xk − ν, 0− µ〉 ≥ 0.

Since M is maximal monotone, and (ν, µ) is arbitrary point
in the graph of M , we conclude that (x̂, 0) ∈ G(M) and
0 ∈M(x̂). Therefore, we have Λ(xk) ⊂ S. ♦

Theorem 3.2. If

(1) ρk ∈ [0, 1],
∑∞
n=1 αk =∞, limn→∞ αk = 0,

(2)
∑∞
k=0 ‖ek‖ <∞, lim infn→∞ βk > 0,

lim supn→∞ βk < 1.

Then the sequence {xk} generated by Algorithm 3.1
converges strongly to a zero z of M and z = PS(u).

Proof. By the definition of xk and the property of ‖ · ‖, we have that

‖xk+1 − z‖2 = ‖αk(u− z) + βk(tk − z) + γk(xk − z)‖2 ≤ ‖βk(tk − z) + γk(xk − z)‖2 + 2αk〈u− z, xk+1 − z〉, (18)

and
‖βk(tk − z) + γk(xk − z)‖2 = γk(γk + βk)‖xk − z‖2 + βk(γk + βk)‖tk − z‖2 − γkβk‖xk − tk‖2. (19)

Substituting (13)(replace x∗ by z) into (19), we have

‖βk(tk − z) + γk(xk − z)‖2 ≤ (1− αk)‖xk − z‖2 + ρkβk(γk + βk)(2‖xk − z‖+ ρk‖ek‖)‖ek‖ − γkβk‖xk − tk‖2. (20)

Hence, we have that

‖xk+1 − z‖2 ≤ (1− αk)‖xk − z‖2 + ρkβk(γk + βk)(2‖xk − z‖+ ρk‖ek‖)‖ek‖
+ 2αk〈u− z, xk+1 − z〉 − γkβk‖xk − tk‖2

and
‖xk+1 − z‖2 ≤ (1− αk)‖xk − z‖2 +M0‖ek‖+ 2αk〈u− z, xk+1 − z〉, (21)

where M0 > 0 satisfying supk≥0{βk(γk + βk)(2ρk‖xk − z‖ + ρk‖ek‖)} ≤ M0. By the assumptions of {λk} and {βk}, there
exists σ > 0 such that σ ≤ min{λk, γkβk} for all k > 0. So the following inequality holds:

‖xk+1 − z‖2 − (1− αk)‖xk − z‖2 + σ‖tk − xk‖2 ≤M0‖ek‖+ 2αk〈u− z, xk+1 − z〉. (22)

Setting sk = ‖xk − z‖2 for all k ≥ 0, we arrive at

sk+1 − (1− αk)sk + σ‖tk − xk‖2 ≤M0‖ek‖+ 2αk〈u− z, xk+1 − z〉. (23)
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In the sequel, we show sk → 0 by considering two cases on
the sequence {sk}.

Case 1 {sk} is eventually decreasing (i.e., there exists N ≥
0 such that {sk} is decreasing for n ≥ N ).

In the case, {sk} must be convergent, and from (22) it
follows that

σ‖tk − xk‖2 ≤ (1− αk)sk − sk+1

+M0‖ek‖+ 2αk‖u− z‖ ·
√
sk+1.

By limk→∞ αk = 0 and limk→∞ ‖ek‖ = 0, we have

lim
k→∞

‖tk − xk‖ = 0.

So it follows from Lemma 3.1 that Λ(xk) ⊂ S. Choose a
subsequence {xkj} of {xk} such that

lim sup
k→∞

〈u− z, xk − z〉 = lim sup
j→∞

〈u− z, xkj − z〉,

and xkj ⇀ x̃.
Since x̃ ∈ S, we get that

lim sup
k→∞

〈u− z, xk − z〉 = 〈u− PS(u), x̃− PS(u)〉 ≤ 0.

Applying Lemma 2.1 to (21), we conclude that {xk}
converges strongly to the point z = PS(u).

Case 2 {sk} is not eventually decreasing. Hence, there
exists a subsequence {skj} such that skj ≤ skj+1 for all j ≥ 0.
So, an integer sequence {τk} can be defined as in Lemma 2.2.
From Lemma 2.2, it follows that sτk ≤ sτk+1 for all k > k0.
Therefore, by (22), we have that

σ‖tτk − xτk‖2 ≤ M0‖eτk‖
+ 2ατk‖u− z‖ ·

√
sτk+1, ∀k > k0.

By limk→∞ αk = 0 and limk→∞ ‖ek‖ = 0, we have

lim
k→∞

‖tτk − xτk‖ = 0.

In a similar way as in case 1 we deduce that Λ(xτk) ⊂ S,
and

lim sup
k→∞

〈u− z, xτk − z〉 ≤ 0.

So, by Theorem 3.1(3), we have

lim sup
k→∞

〈u− z, xτk+1 − z〉 ≤ 0.

By (21), we also have

sτk+1 ≤ (1− ατk)sτk +M0‖ek‖+ 2αk〈u− z, xτk+1 − z〉.

Hence, it follows from Lemma 2.1 that limk→∞ sτk+1 = 0.
Since max(sτk , sk) ≤ sτk+1 for all k > k0, we conclude that
limk→∞ sk = 0, i.e., limk→∞ xk = z. This completes the
proof. ♦

Theorem 3.3. Let the set-valued mapping M : H → 2H

be maximal monotone, u ∈ H be a given point. Select initial
x0 ∈ H, the iterative sequence {xk} generated by

xk+1 = αku+ γkx
k + βkJk(xk + ek),

where αk, βk, γk ⊂ (0, 1) with αk +βk + γk = 1(∀k) are real
sequences, the number λk > 0 and ek is an error. If

(1)
∑∞
k=0 αk =∞, limn→∞ αk = 0, lim infk≥0 λk > 0,

(2) 1 > lim supk≥0 βk ≥ lim infk≥0 βk > 0,∑∞
k=0 ‖ek‖ <∞.

Then the sequence {xk} is convergent strongly to z =
PS(u).

Proof. Let ρk = 1 in Algorithm 3.1, then we have tk = yk

for all k ≥ 0. It follows from yk = Jk(xk + ek) ∈ K and
Theorem 3.2 that the conclusion holds. ♦

4. Numerical Example
In this section, we give some numerical examples to show

our results.
Let H = R, M : R → 2R defined by M(x) = {x}. It is

obvious that M is maximal monotone and S = {0} 6= ∅.
Take

u =
1

2
, x0 =

1

2
, ek = 0(∀k ≥ 0), λk = 1 +

1

k + 1
(∀k ≥ 0),

αk =
1

k + 1
(∀k ≥ 0), βk =

{
0, k = 0
1
2 , k ≥ 1

,

then

γk =

{
0, k = 0
k−1

2(k+1) , k ≥ 1
.

There are some iterative points generated by Algorithm 3.1
which is shown in Table 1 for the example above. From Table
1, it’s obvious that the convergent speed of Algorithm 3.1 for
ρk = 1 is slower than the other case, the convergent speed of
Algorithm 3.1 for ρk = 1

2 is faster. If xk = 0.01294, it gets
at 102th iterative steps for ρk = 1

2 , but it gets at about 154th
iterative steps for ρk = 1.

Table 1. Some iterative points generated by Algorithm 3.1.

k 50 100 200 500 800 1000 1100 1200

ρ = 1 0.03956 0.01990 0.00997 0.00400 0.00250 0.00200 0.00182 0.00167

ρ = 1
2 0.02603 0.01318 0.00663 0.00266 0.00166 0.00133 0.00121 0.00111
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The following two figures(Figure 1, Figure 2) show the
convergence of the sequence {xk} given in the example above
visually. From the figures, we can know the convergence
speed is not affected by the projection in Algorithm 3.1 in this
example.
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Figure 1. Iterative points generated by Algorithm 1.1 from 1 to 300.
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Figure 2. Iterative points generated by Algorithm 1.1 from 1 to 2000.

Remark 4.1. When ek = 0(∀k ≥ 0), Theorem 3.3 of Yao
and Noor ([15]) is same as Theorem 3.3. But the convergence

speed of Algorithm 3.1 for ρk 6= 1 is quicker than that given
in Theorem 3.3 of Yao and Noor ([15]) in this numerical
example. Hence, the convergence and the convergence speed
of Algorithm 3.1 is improved by the projection.

5. Conclusions

In this paper, we construct a hybrid Halpern type proximal
point algorithm with errors, which combinate the Halpern
type proximal point algorithm [15] and the modified proximal
point algorithm with errors [6], for approximating the zero
of a maximal monotone operator, and prove the strong
convergence of the given algorithm with weaker assumptions
in Hilbert space. Hence, we give an affirmant answer of the
strong convergence of the modified proximal point algorithm
with errors by using a modified orthogonal projection onto
a moving halt-spaces of Zhang [6], and generalize the
corresponding results of Yao and Noor [15] and the others.
In addition, future research will consider the generalization
of our results in a uniformly convex Banach space with a
uniformly Gâteaux differentiable norm for approximating the
zero of a m-accretive operator, which would generalize the
corresponding results of Zhang and Song [17]. On the other
hand, because Leuştean, Nicolae and Sipoş[22] discussed
the application of the proximal point algorithm in CAT (0)
space, and Gheorghe and Adrian[23] extended the proximal
point algorithm in Hilbert space, we would generalized and
improved our algorithm in CAT (0) space.
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[21] P. E. Maingé, Strong convergence of projected
subgradient methods for nonsmooth and nonstrictly
convex minimization, Set-Valued Anal., 16 (2008), 899-
912.
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